Классификация осциллографов

Наряду с мультиметрами, осциллографы можно считать наиболее распространенными контрольно–измерительными приборами во многих технических отраслях производства и научных исследований, или же при решении разных задач поставленных перед пользователем.
История этого прибора началась еще в 1947 году, когда американская фирма Tektronix запустила производство первой модели аналоговых осциллографов Tektronix Model 511, на основе применения катодно-лучевой трубки. А уже в 1980 годах начался принципиально новый этап развития осциллографов: американская фирма LeCroy Corporation выпускает первые цифровые запоминающие осциллографы. А широкое распространение и прогресс в развитии современных цифровых технологий привели к серьезному изменению характеристик и расширению возможностей осциллографов этого типа.По способу обработки входного сигнала осциллографы можно разделить на аналоговые и цифровые, а также по количеству лучей на однолучевые, двулучевые и т.д. N-лучевой осциллограф имеет N сигнальных входов и может одновременно отображать на экране N графиков. Цифровые осциллографы в свою очередь делятся на запоминающие, люминофорные и стробоскопические.Для лучшего понимания различий и особенностей отдельных типов осциллографов, ниже представлены их краткие описания.Аналоговые осциллографы.Приборы этого типа считаются классическими представителями общего понятия об осциллографе, как контрольно-измерительном приборе. В целом, любой аналоговый осциллограф состоит из следующих составляющих: входной делитель, усилитель вертикального отклонения, схема синхронизации и горизонтального отклонения, источник питания и электронно-лучевая трубка. В осциллографах применяют электронно-лучевые трубки с электростатическим отклонением, в отличие от телевизоров и мониторов, где используется магнитное отклонение. Электронно-лучевые трубки с электростатическим отклонением, хотя и более сложны в изготовлении, имеют гораздо больший частотный диапазон. В каждый конкретный момент отклонение электронного луча и светового пятна на экране, которое он образует, пропорционально напряжению, приложенному к пластинам вертикального отклонения. Напряжение на пластинах горизонтального отклонения изменяется линейно, обеспечивая горизонтальную развертку. Нижняя частота, при которой картинка еще читается, составляет в среднем 10 Гц, хотя при применении специальных электронно-лучевых трубок с большим временем послесвечения она может быть значительно ниже. Верхняя рабочая частота определяется в основном характеристиками усилителя вертикального отклонения и емкостью между отклоняющими пластинами.В последнее время цифровые осциллографы, которые имеют большой ряд преимуществ, вытесняют аналоговые приборы из мирового рынка, но все-таки традиционные аналоговые осциллографы реального времени не исчезают полностью, в первую очередь из-за низкой стоимости в сравнении с цифровыми осциллографами. Плюс к этому с развитием элементной базы аналоговые осциллографы приобрели ряд важных дополнительных функций и возможностей, например, чрезвычайно облегчающие работу курсоры с цифровым отсчетом величин (напряжения и времени) и очень удобное цифровое управление. С помощью входного мультиплексора для нескольких каналов можно достаточно просто организовать единую развертку на однолучевой трубке с отображением нескольких сигналов.Цифровые запоминающие осциллографыПо сравнению с аналоговыми предшественниками они имеют более широкие возможности, а благодаря снижению стоимости цифровых схем с каждым годом они становятся более доступными потенциальным покупателям.В общем виде цифровой осциллограф состоит из входного делителя, нормализующего усилителя, аналого-цифрового преобразователя, блока памяти, устройства управления и устройства отображения. Устройство отображения обычно выполняется на основе жидкокристаллической панели.

Цифровые осциллографы владеют значительными возможностями за счет самого принципа работы. Входной сигнал после нормализации преобразуется в цифровую форму и записывается в память. Скорость записи (количество выборок в секунду) задается устройством управления, и ее верхний предел определяется быстродействием аналого-цифрового преобразователя, а нижний предел теоретически не ограничен, в отличие от аналоговых осциллографов.
Полная оцифровка сигнала позволяет избежать отображения сигнала в реальном масштабе времени и, следовательно, повысить устойчивость изображения, организовать сохранение результатов, упростить масштабирование и растяжку, ввести метки. Использование дисплея вместо осциллографической трубки открывает возможность для отображения любой дополнительной информации и управления прибором с помощью меню.

Более дорогие приборы имеют цветной дисплей, благодаря чему они позволяют легко различать сигналы различных каналов, метки времени и амплитуды, курсоры, могут накапливать отображаемый в течение большого числа разверток сигнал, а также выделять цветом места с наибольшей повторяемостью сигнала. Характеристики современных цифровых осциллографов впечатляющие: высокая чувствительность (от 1 мВ/дел) и разрешение (от 8 до 14 бит); широкий диапазон коэффициентов разверток (от 2 нс до 50 с); растяжка сигнала по времени или по амплитуде в широких пределах; развитая логика синхронизации с любыми задержками запуска развертки. Кроме обычных схем запуска синхронизации запуск может производиться, например, при наступлении определенного события или при его отсутствии, а также при достижении определенного значения параметра сигнала. Сигнал, по которому осуществляется синхронизация, и основной сигнал можно наблюдать в момент непосредственно перед запуском развертки.Используемые в осциллографах процессоры цифровой обработки сигнала предоставляют возможность исследования спектра сигнала посредством анализа с применением быстрого преобразования Фурье (см. Рис.3.). Цифровое представление информации обеспечивает сохранение экрана с результатами измерения в памяти компьютера или вывод непосредственно на принтер. Некоторые осциллографы имеют накопитель для сохранения изображения в виде файлов для последующего архивирования или дальнейшей обработки.

Рис. 3. Использование быстрого преобразования Фурье в цифровых осциллографах RIGOL серии DS1000

Цифровые люминофорные осциллографыЭтот класс цифровых осциллографов использует новую архитектуру построения, которая базируется на технологии «цифрового люминофора». Эта технология в цифровой форме имитирует присущее аналоговым осциллографам реального времени изменение интенсивности изображения. Иными словами, цифровые люминофорные осциллографы позволяют разработчикам видеть на экране, например, модулированные сигналы и все их тонкие детали, как и аналоговые осциллографы реального времени, обеспечивая при этом их хранение, измерение и анализ, как цифровые запоминающие осциллографы. Как и другие современные цифровые осциллографы, люминофорные осциллографы имеют память, в которой, в частности, хранятся значения разницы времен задержек между различными пробниками.

Для примера, способность цифровых люминофорных осциллографов отображать информацию с переменной интенсивностью существенным образом облегчает поиск неисправностей в импульсных блоках питания, особенно определение избыточной глубины модуляции сигнала в цепях регулировки выходного напряжения, которая, как известно, приводит к нестабильности работы этих блоков.Таким образом, цифровые люминофорные осциллографы не только объединяют лучшие качества аналоговых и цифровых приборов, но и превосходят их. Они имеют все достоинства цифровых запоминающих осциллографов (от хранения данных до сложных видов синхронизации), обеспечивая в то же время особые возможности аналоговых осциллографов реального времени (мгновенную реакцию на изменение сигнала и отображение сигнала с переменной яркостью, которая есть возможной за счет цифровой эмуляции флюоресценции).Цифровые стробоскопические осциллографы
В этом классе приборов используется принцип последовательного стробирования мгновенных значений сигнала для преобразования (сжатия) его спектра; при каждом повторении сигнала определяется (отбирается) мгновенное значение сигнала в одной точке.

К приходу следующего сигнала точка отбора перемещается по сигналу, и так до тех пор, пока он не будет весь простробирован. Преобразованный сигнал, представляющий собой огибающую мгновенных значений входного сигнала, повторяет его форму. Длительность преобразованного сигнала во много раз превышает длительность исследуемого и, следовательно, имеет место сжатие спектра, что эквивалентно соответствующему расширению полосы пропускания. Стробоскопические осциллографы наиболее широкополосные (значение полосы пропускания может становить 100ГГц) и позволяют исследовать периодические сигналы с минимальной длительностью. Но следует отметить, осциллографы этого класса являются очень дорогими, а поэтому используются, как правило, для решения сложных технических и производственных проблем.Виртуальные осциллографы.Новый класс осциллографов, который может быть как внешним прибором с USB или параллельным портом ввода-вывода данных, или же внутренним дополнительным прибором на основе PCI или ISA карт. Программное обеспечение любого виртуального осциллографа дает возможность полного управления прибором, а также предоставляет ряд сервисных возможностей, например, экспорт/импорт данных, математическая обработка сигналов, расширенные измерения, цифровая фильтрация и т. д.

Различные серии осциллографов на базе ПК могут использоваться для очень широкого спектра измерений, в частности при разработке и обслуживании радиоэлектронной аппаратуры, в сферах телекоммуникаций и связи, при производстве компьютерной техники, при диагностике автотранспортных средств на станциях техобслуживания и многих других, в которых необходимо тестировать и оценивать происходящие переходные, неустойчивые процессы. Учитывая ключевые преимущества – высокое быстродействие, малые габариты, легкость в использовании и невысокую стоимость, можно утверждать, что данные приборы – достойная альтернатива традиционным цифровым запоминающим осциллографам Недостатком прибора является невозможность увидеть и измерить постоянную составляющую сигналов.Портативные осциллографы.
Прогресс в развитии цифровых технологий позволил обычные стационарные цифровые осциллографы преобразовать в портативные осциллографы с отличными массогабаритными показателями и с малым энергопотреблением.

Причем портативные приборы с питанием от батареек не уступают стационарным осциллографам по функциональности и имеют широкие возможности применения в различных отраслях производства, обслуживания, исследований.